A comparative study for content-based dynamic spam classification using four machine learning algorithms
نویسندگان
چکیده
The growth of email users has resulted in the dramatic increasing of the spam emails during the past few years. In this paper, four machine learning algorithms, which are Naı̈ve Bayesian (NB), neural network (NN), support vector machine (SVM) and relevance vector machine (RVM), are proposed for spam classification. An empirical evaluation for them on the benchmark spam filtering corpora is presented. The experiments are performed based on different training set size and extracted feature size. Experimental results show that NN classifier is unsuitable for using alone as a spam rejection tool. Generally, the performances of SVM and RVM classifiers are obviously superior to NB classifier. Compared with SVM, RVM is shown to provide the similar classification result with less relevance vectors and much faster testing time. Despite the slower learning procedure, RVM is more suitable than SVM for spam classification in terms of the applications that require low complexity. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملAn Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملارائه روشی مناسب برای دسته بندی نامه های الکترونیکی تبلیغاتی بر مبنای پروفایل کاربران
In general, Spam is related to satisfy or not satisfy the client and isn’t related to the content of the client’s email. According to this definition, problems arise in the field of marketing and advertising for example, it is possible that some of the advertising emails become spam for some users, and not spam for others. To deal with this problem, many researchers design an anti-s...
متن کاملSupervised Learning Approach for Spam Classification Analysis using Data Mining Tools
E-mail is one of the most popular and frequently used ways of communication due to its worldwide accessibility, relatively fast message transfer, and low sending cost. The flaws in the e-mail protocols and the increasing amount of electronic business and financial transactions directly contribute to the increase in e-mail-based threats. Email spam is one of the major problems of the today’s Int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 21 شماره
صفحات -
تاریخ انتشار 2008